131 research outputs found

    A Gentle Introduction to Epistemic Planning: The DEL Approach

    Get PDF
    Epistemic planning can be used for decision making in multi-agent situations with distributed knowledge and capabilities. Dynamic Epistemic Logic (DEL) has been shown to provide a very natural and expressive framework for epistemic planning. In this paper, we aim to give an accessible introduction to DEL-based epistemic planning. The paper starts with the most classical framework for planning, STRIPS, and then moves towards epistemic planning in a number of smaller steps, where each step is motivated by the need to be able to model more complex planning scenarios.Comment: In Proceedings M4M9 2017, arXiv:1703.0173

    Learning Action Models: Qualitative Approach

    Get PDF
    In dynamic epistemic logic, actions are described using action models. In this paper we introduce a framework for studying learnability of action models from observations. We present first results concerning propositional action models. First we check two basic learnability criteria: finite identifiability (conclusively inferring the appropriate action model in finite time) and identifiability in the limit (inconclusive convergence to the right action model). We show that deterministic actions are finitely identifiable, while non-deterministic actions require more learning power-they are identifiable in the limit. We then move on to a particular learning method, which proceeds via restriction of a space of events within a learning-specific action model. This way of learning closely resembles the well-known update method from dynamic epistemic logic. We introduce several different learning methods suited for finite identifiability of particular types of deterministic actions.Comment: 18 pages, accepted for LORI-V: The Fifth International Conference on Logic, Rationality and Interaction, October 28-31, 2015, National Taiwan University, Taipei, Taiwa

    Seeing is Believing: Formalising False-Belief Tasks in Dynamic Epistemic Logic

    Get PDF
    Abstract. In this paper we show how to formalise false-belief tasks like the Sally-Anne task and the second-order chocolate task in Dynamic Epistemic Logic (DEL). False-belief tasks are used to test the strength of the Theory of Mind (ToM) of humans, that is, a human’s ability to attribute mental states to other agents. Having a ToM is known to be essential to human social intelligence, and hence likely to be essential to social intelligence of artificial agents as well. It is therefore important to find ways of implementing a ToM in artificial agents, and to show that such agents can then solve false-belief tasks. In this paper, the approach is to use DEL as a formal framework for representing ToM, and use reasoning in DEL to solve false-belief tasks. In addition to formalising several false-belief tasks in DEL, the paper introduces some extensions of DEL itself: edge-conditioned event models and observability propositions. These extensions are introduced to provide better formalisations of the false-belief tasks, but expected to have independent future interest.

    Kursusudvikling gennem systematisk evaluering

    Get PDF

    Cooperative Epistemic Multi-Agent Planning for Implicit Coordination

    Get PDF
    Epistemic planning can be used for decision making in multi-agent situations with distributed knowledge and capabilities. Recently, Dynamic Epistemic Logic (DEL) has been shown to provide a very natural and expressive framework for epistemic planning. We extend the DEL-based epistemic planning framework to include perspective shifts, allowing us to define new notions of sequential and conditional planning with implicit coordination. With these, it is possible to solve planning tasks with joint goals in a decentralized manner without the agents having to negotiate about and commit to a joint policy at plan time. First we define the central planning notions and sketch the implementation of a planning system built on those notions. Afterwards we provide some case studies in order to evaluate the planner empirically and to show that the concept is useful for multi-agent systems in practice.Comment: In Proceedings M4M9 2017, arXiv:1703.0173

    Undecidability in Epistemic Planning

    Get PDF
    Dynamic epistemic logic (DEL) provides a very expressive framework for multi-agent planning that can deal with nondeterminism, partial observability, sensing actions, and arbitrary nesting of beliefs about other agents’ beliefs. However, as we show in this paper, this expressiveness comes at a price. The planning framework is undecidable, even if we allow only purely epistemic actions (actions that change only beliefs, not ontic facts). Undecidability holds already in the S5 setting with at least 2 agents, and even with 1 agent in S4. It shows that multi-agent planning is robustly undecidable if we assume that agents can reason with an arbitrary nesting of beliefs about beliefs. We also prove a corollary showing undecidability of the DEL model checking problem with the star operator on actions (iteration)

    Bisimulation and expressivity for conditional belief, degrees of belief, and safe belief

    Get PDF
    Plausibility models are Kripke models that agents use to reason about knowledge and belief, both of themselves and of each other. Such models are used to interpret the notions of conditional belief, degrees of belief, and safe belief. The logic of conditional belief contains that modality and also the knowledge modality, and similarly for the logic of degrees of belief and the logic of safe belief. With respect to these logics, plausibility models may contain too much information. A proper notion of bisimulation is required that characterises them. We define that notion of bisimulation and prove the required characterisations: on the class of image-finite and preimage-finite models (with respect to the plausibility relation), two pointed Kripke models are modally equivalent in either of the three logics, if and only if they are bisimilar. As a result, the information content of such a model can be similarly expressed in the logic of conditional belief, or the logic of degrees of belief, or that of safe belief. This, we found a surprising result. Still, that does not mean that the logics are equally expressive: the logics of conditional and degrees of belief are incomparable, the logics of degrees of belief and safe belief are incomparable, while the logic of safe belief is more expressive than the logic of conditional belief. In view of the result on bisimulation characterisation, this is an equally surprising result. We hope our insights may contribute to the growing community of formal epistemology and on the relation between qualitative and quantitative modelling

    The Curse of Shared Knowledge: Recursive Belief Reasoning in a Coordination Game with Imperfect Information

    Full text link
    Common knowledge is a necessary condition for safe group coordination. When common knowledge can not be obtained, humans routinely use their ability to attribute beliefs and intentions in order to infer what is known. But such shared knowledge attributions are limited in depth and therefore prone to coordination failures, because any finite-order knowledge attribution allows for an even higher order attribution that may change what is known by whom. In three separate experiments we investigate to which degree human participants (N=802) are able to recognize the difference between common knowledge and nth-order shared knowledge. We use a new two-person coordination game with imperfect information that is able to cast the recursive game structure and higher-order uncertainties into a simple, everyday-like setting. Our results show that participants have a very hard time accepting the fact that common knowledge is not reducible to shared knowledge. Instead, participants try to coordinate even at the shallowest depths of shared knowledge and in spite of huge payoff penalties

    Many-Valued Hybrid Logic

    Get PDF
    In this paper we define a family of many-valued semantics for hybrid logic, where each semantics is based on a finite Heyting algebra of truth-values. We provide sound and complete tableau systems for these semantics. Moreover, we show how the tableau systems can be made terminating and thereby give rise to decision procedures for the logics in question. Our many-valued hybrid logics turn out to be "intermediate" logics between intuitionistic hybrid logic and classical hybrid logic in a specific sense explained in the paper. Our results show that many-valued hybrid logic is indeed a natural enterprise
    • …
    corecore